

Caesar with MakeCode

Problems occuring while encrypting and decrypting with Caesar

Problem:

- The computer only understands very simple orders.
- We have to rethink the encryption and decryption process.

What the computer doesn't understand

"All letters are on a disk, the plaintext letters on the outside and the ciphertext letters on the inside and to change the key you turn the inner disk."

What is a computer able to do?

• Numbers & text

Simple operations

 Numbers: add, subtract
 Text: join

- Compare
 - Numbers: $=, <, >, \leq, \geq, \neq$
 - Text: =, \neq , contains

What is a computer able to do?

• The operations you can use on text won't help with shifting a letter.

• You can only shift numbers, by adding or subtracting.

Translate letters to numbers.

Translate letters ↔ numbers

The easiest way is to count of the letters.

Translate letters ↔ numbers

• a = 1	• h = 8	• o = 15	• v = 22
• b = 2	• i = 9	• p = 16	• w = 23
• c = 3	• j = 10	• q = 17	• x = 24
• d = 4	• k = 11	• r = 18	• y = 25
• e = 5	• = 12	• s = 19	• z = 26
• f = 6	• m= 13	• t = 20	
• g = 7	• n = 14	• u = 21	

Translate letters ↔ numbers

a	b	C	d	000	Х	У	Z
\$	\$	\$	\$	\$	\$	\$	\$
1	2	3	Ą,	000	24	25	26

Step 1: Translate a letter to a number

Step 2: Add the key to the number you got out

Step 3: Translate the new number back to a letter

If, after adding the key, you have a number bigger than 26, subtract 26.

-26

- Step 1: Translate a letter to a number.
- Step 2: Add the key to the number you got out, if the sum is bigger than 26, subtract 26.
- Step 3:

Translate the new number back to a letter.

a	b	C	d	000	Ж	у	Z
\$	\$	\$	\$	\$	\$	\$	\$
1	2	3	A ,	000	24	25	26

Step 1: Translate a letter to a number

Step 2: Subtract the key from the number you got out

Step 3: Translate the new number back to a letter

If, after subtracting the key, you have a number smaller than 1, add 26.

• Step 1: Translate a letter to a number.

- Step 2: Subtract the key from the number you got out, if the difference is smaller than 26, add 26.
- Step 3:

Translate the new number back to a letter.

You know the concept!

You know the concept!

• The dial of a clock has got **12** hours, if we go beyond **12** we start over at **1**.

• The letter clock has got **26** letters, if we go beyond the **26th** we start over at the **1st**.

Summary

• In order to hand of the work to the computer, we have to express the encryption and decryption process in simple terms.

• Letters are translated to numbers and shifting a letter is done by adding or subtracting a key value.

• We have to make sure, that the numbers lie between 1 & 26 (only those numbers have a letter assigned to themself).