

Caesar with MakeCode

Problems occurring while encrypting and decrypting with Caesar

Problem:

The computer only understands very simple orders.

 We have to rethink the encryption and decryption process.

What the computer doesn't understand

"All letters are on a disk, the plaintext letters on the outside and the ciphertext letters on the inside and to change the key you turn the inner disk."

What is a computer able to do?

Numbers & text

- Simple operations
 - Numbers: add, subtract
 - Text: join

- Compare
 - Numbers: =, <, >, \le , \ge , \ne
 - Text: =, \neq , contains

What is a computer able to do?

 The operations you can use on text won't help with shifting a letter.

You can only shift numbers, by adding or subtracting.

Translate letters to numbers.

Translate letters ↔ numbers

The easiest way is to count of the letters.

Translate letters ↔ numbers

•
$$h = 8$$

•
$$o = 15$$

•
$$v = 22$$

•
$$b = 2$$

•
$$i = 9$$

•
$$p = 16$$

•
$$w = 23$$

•
$$c = 3$$

•
$$x = 24$$

•
$$d = 4$$

•
$$k = 11$$

•
$$r = 18$$

•
$$y = 25$$

•
$$e = 5$$

•
$$s = 19$$

•
$$z = 26$$

•
$$g = 7$$

•
$$n = 14$$

Translate letters ↔ numbers

a	Ь	C	000	X	У	Z
‡						
1	2	3	000	24	25	26

a	Ь	С	d	000	X	У	Z
‡							
1	2	3	4	000	24	25	26

Step 1: Translate a letter to a number

Step 2: Add the key to the number you got out

Step 3: Translate the new number back to a letter

If, after adding the key, you have a number bigger than 26, subtract 26.

• Step 1:

Translate a letter to a number.

• Step 2:

Add the key to the number you got out, if the sum is bigger than 26, subtract 26.

• Step 3:

Translate the new number back to a letter.

a	b	C	d	000	X	У	Z
‡							
1	2	3	4	000	24	25	26

Step 1: Translate a letter to a number

Step 2: Subtract the key from the number you got out

Step 3: Translate the new number back to a letter

$$2 - 3 = -1$$

If, after subtracting the key, you have a number smaller than 1, add 26.

• Step 1:

Translate a letter to a number.

• Step 2:

Subtract the key from the number you got out, if the difference is smaller than 26, add 26.

• Step 3:

Translate the new number back to a letter.

You know the concept!

You know the concept!

 The dial of a clock has got 12 hours, if we go beyond 12 we start over at 1.

• The letter clock has got **26** letters, if we go beyond the **26th** we start over at the **1st**.

Summary

 In order to hand of the work to the computer, we have to express the encryption and decryption process in simple terms.

 Letters are translated to numbers and shifting a letter is done by adding or subtracting a key value.

 We have to make sure, that the numbers lie between 1 & 26 (only) those numbers have a letter assigned to themself).