Caesar with MakeCode

Problems occuring while encrypting and decrypting with Caesar

Problem:

- The computer only understands very simple orders.
- We have to rethink the encryption and decryption process.

What the computer doesn't understand
„All letters are on a disk, the plaintext letters on the outside and the ciphertext letters on the inside and to change the key you turn the inner disk."

What is a computer able to do?

- Numbers \& text
- Simple operations
- Numbers: add, subtract
- Text: join
- Compare
- Numbers: $=,<,>, \leq, \geq, \neq$
- Text: =, \neq, contains

What is a computer able to do?

- The operations you can use on text won't help with shifting a letter.
- You can only shift numbers, by adding or subtracting.
- Translate letters to numbers.

Translate letters \leftrightarrow numbers

The easiest way is to count of the letters.

Translate letters \leftrightarrow numbers

- $\mathrm{a}=1$
- $\mathrm{h}=8$
- $0=15$
- $\mathrm{v}=22$
- $b=2$
- $i=9$
- $p=16$
- $w=23$
- $\mathrm{C}=3$
- $j=10$
- $q=17$
- $x=24$
- $d=4$
- $\mathrm{k}=11$
- $r=18$
- $y=25$
- $\mathrm{e}=5$
- $\mid=12$
- $s=19$
- $z=26$
- $f=6$
- $\mathrm{m}=13$
- $\mathrm{t}=20$
- $g=7$
- $\mathrm{n}=14$
- $u=21$

FranaMa

Translate letters \leftrightarrow numbers

¢	b	c	-o	8	v	2
\downarrow						
1	2	3	-oo	24	25	26

Encrypt with the computer

อ	b	c	d	оо	8	y	2
\downarrow							
1	2	3	4	-oo	24	25	26

Encrypt with the computer

Step 1: Translate a letter to a number

Step 2: Add the key to the number you got out

Step 3: Translate the new number back to a letter

Encrypt with the computer

$$
25+3=28
$$

Encrypt with the computer

If, after adding the key, you have a number
bigger than 26 , subtract 26 .

Encrypt with the computer

- Step 1:

Translate a letter to a number.

- Step 2:

Add the key to the number you got out, if the sum is bigger than 26, subtract 26 .

- Step 3:

Translate the new number back to a letter.

Decrypt with the computer

ล	b	c	d	-	x	y	z
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\uparrow	\downarrow	\downarrow
1	2	3	4	оо	24	25	26

Decrypt with the computer

Step 1: Translate a letter to a number
Step 2: Subtract the key from the number you got out

Step 3: Translate the new number back to a letter

Franama $\{|\mid j$ ipn

Decrypt with the computer

Decrypt with the computer

If, after subtracting the key, you have a number smaller than 1, add 26.

Decrypt with the computer

- Step 1:

Translate a letter to a number.

- Step 2:

Subtract the key from the number you got out, if the difference is smaller than 26 , add 26 .

- Step 3:

Translate the new number back to a letter.

panama

You know the concept!

Tranama (||j) ipn

You know the concept!

- The dial of a clock has got 12 hours, if we go beyond 12 we start over at 1.
- The letter clock has got $\mathbf{2 6}$ letters, if we go beyond the 26th we start over at the 1st.

FPANaMa

Summary

- In order to hand of the work to the computer, we have to express the encryption and decryption process in simple terms.
- Letters are translated to numbers and shifting a letter is done by adding or subtracting a key value.
- We have to make sure, that the numbers lie between 1 \& 26 (only those numbers have a letter assigned to themself).

